LECTURE 10

PREVIOUS YEAR PROBLEMS

Q1(JEE MAINS 2019)

The following results were obtained during kinetic studies of the reaction: $2A+B \to Products$

Experment	[A] (in mol L ⁻¹)	[B] (in mol L ⁻¹)	Initial Rate of reaction (in mol L^{-1} min ⁻¹)	
(I)	0.10	0.20	6.93×10^{-3}	
(II)	0.10	0.25	6.93×10^{-3}	
(III)	0.20	0.30	1.386×10^{-2}	

The time (in minutes) required to consume half of A is:

A	10			
В	5			
С	100			
D	1			
		Mail		

Correct option is B)

$$6.93 \times 10^{-3} = k \times (0.1)^{x} (0.2)^{y}$$
....(i)

$$6.93 \times 10^{-3} = k \times (0.1)^{x} (0.25)^{y}$$
....(ii)

From the above equation, y = 0

and
$$1.386 \times 10^{-2} = k \times (0.2)^{x} (0.30)^{y}$$
.....(iii)

Divide equation (i) by (iii), we get

$$\frac{1}{2} = \left(\frac{1}{2}\right)^{x} \Rightarrow x = 1$$

So
$$r = k \times (0.1) \times (0.2)^0$$

$$6.93 \times 10^{-3} = k \times 0.1 \times (0.2)^{0}$$

$$k = 6.93 \times 10^{-2}$$

$$t_{1/2} = \frac{0.693}{2k} = \frac{0.693}{0.693 \times 10^{-1} \times 2} = \frac{10}{2} = 5$$